المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مدارات الأقمار الصناعية Satellites Orbits
2025-01-11
كفران النعم في الروايات الإسلامية
2025-01-11
التلسكوبات الفضائية
2025-01-11
مقارنة بين المراصد الفضائية والمراصد الأرضية
2025-01-11
بنات الملك شيشنق الثالث
2025-01-11
الشكر وكفران النعمة في القرآن
2025-01-11


McNugget Number  
  
982   04:54 مساءً   date: 4-1-2021
Author : Vardi, I
Book or Source : Computational Recreations in Mathematica. Reading, MA: Addison-Wesley
Page and Part : ...


Read More
Date: 12-5-2020 659
Date: 5-6-2020 1812
Date: 25-3-2020 693

McNugget Number

 

A McNugget number is a positive integer that can be obtained by adding together orders of McDonald's® Chicken McNuggetsTM (prior to consuming any), which originally came in boxes of 6, 9, and 20 (Vardi 1991, pp. 19-20 and 233-234; Wah and Picciotto 1994, p. 186). All integers are McNugget numbers except 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, and 43. The value 43 therefore corresponds to the Frobenius number of {6,9,20}.

Since the Happy MealTM-sized nugget box (4 to a box) can now be purchased separately, the modern McNugget numbers are linear combinations of 4, 6, 9, and 20. These new-fangled numbers are much less interesting than before, with only 1, 2, 3, 5, 7, and 11 remaining as non-McNugget numbers. The value 11 therefore corresponds to the Frobenius number of {4,6,9,20}.

The greedy algorithm can be used to find a McNugget expansion of a given integer n. This can also be done in the Wolfram Language using FrobeniusSolve[{6, 9, 20}n]. The following table summarizes (classic) McNugget expansions for small integers.

n McNugget expansions
6 {{1,0,0}}
9 {{0,1,0}}
12 {{2,0,0}}
15 {{1,1,0}}
18 {{0,2,0},{3,0,0}}
20 {{0,0,1}}
21 {{2,1,0}}
24 {{1,2,0},{4,0,0}}
26 {{1,0,1}}
27 {{0,3,0},{3,1,0}}
29 {{0,1,1}}
30 {{2,2,0},{5,0,0}}

REFERENCES:

Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 19-20 and 233-234, 1991.

 Wagon, S. "Greedy Coins." https://library.wolfram.com/infocenter/MathSource/5187/.

Wah, A. and Picciotto, H. Lesson 5.8, Problem 1 in Algebra Themes, Tools and Concepts. Mountain View, CA: Creative Publications, p. 186, 1994.

Wilson, D. rec.puzzles newsgroup posting, March 20, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.