Read More
Date: 27-3-2021
1787
Date: 15-2-2016
1896
Date: 6-3-2021
1560
|
Given an event in a sample space which is either finite with elements or countably infinite with elements, then we can write
and a quantity , called the probability of event , is defined such that
1. .
2. .
3. Additivity: , where and are mutually exclusive.
4. Countable additivity: for , 2, ..., where , , ... are mutually exclusive (i.e., ).
REFERENCES:
Doob, J. L. "The Development of Rigor in Mathematical Probability (1900-1950)." Amer. Math. Monthly 103, 586-595, 1996.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 26-28, 1984.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|