 
					
					
						Presheaf					
				 
				
					
						 المؤلف:  
						Hartshorne, R
						 المؤلف:  
						Hartshorne, R					
					
						 المصدر:  
						Algebraic Geometry. Berlin: Springer-Verlag
						 المصدر:  
						Algebraic Geometry. Berlin: Springer-Verlag					
					
						 الجزء والصفحة:  
						pp. 60-61
						 الجزء والصفحة:  
						pp. 60-61					
					
					
						 15-5-2021
						15-5-2021
					
					
						 1906
						1906					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Presheaf
For  a topological space, the presheaf
 a topological space, the presheaf  of Abelian groups (rings, ...) on
 of Abelian groups (rings, ...) on  is defined such that
 is defined such that
1. For every open subset  , an Abelian group (ring, ...)
, an Abelian group (ring, ...)  , and
, and
2. For every inclusion  of open subsets of
 of open subsets of  , a morphism of Abelian groups (rings, ...)
, a morphism of Abelian groups (rings, ...) 
subject to the conditions:
1. If  denotes the empty set, then
 denotes the empty set, then  ,
,
2.  is the identity map
 is the identity map  , and
, and
3. If  are three open subsets, then
 are three open subsets, then  .
.
In the language of categories, let  be the category whose objects are the open subsets of
 be the category whose objects are the open subsets of  and the only morphisms are the inclusion maps. Thus,
 and the only morphisms are the inclusion maps. Thus,  is empty if
 is empty if  and
 and  has just one element if
 has just one element if  . Then a presheaf is a contravariant functor from the category
. Then a presheaf is a contravariant functor from the category  to the category
 to the category  of Abelian groups (
 of Abelian groups ( of rings, ...).
 of rings, ...).
As a terminology, if  is a presheaf on
 is a presheaf on  , then
, then  are called the sections of the presheaf over the open set
 are called the sections of the presheaf over the open set  , sometimes denoted as
, sometimes denoted as  . The maps
. The maps  are called the restriction maps. If
 are called the restriction maps. If  , then the notation
, then the notation  is usually used instead of
 is usually used instead of  .
.
REFERENCES:
Hartshorne, R. Algebraic Geometry. Berlin: Springer-Verlag, pp. 60-61, 1977.
				
				
					
					 الاكثر قراءة في  التبلوجيا
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة