Parallel Transport					
				 
				
					
						
						 المؤلف:  
						Do Carmo, M					
					
						
						 المصدر:  
						Riemannian Geometry. Boston, MA: Birkhäuser, 1993.					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						10-7-2021
					
					
						
						1444					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Parallel Transport
The notion of parallel transport on a manifold 
 makes precise the idea of translating a vector field 
 along a differentiable curve to attain a new vector field 
 which is parallel to 
. More precisely, let 
 be a smooth manifold with affine connectionVector Bundle Connection 
, let 
 be a differentiable curve from an interval 
 into 
, and let 
 be a vector tangent to 
 at 
 for some 
. A vector field 
 is said to be the parallel transport of 
 along 
 provided that 
, 
, is a vector field for which 
.
Note that the use of the quantifier parallel in the above definition makes reference to the fact that a parallel transport 
 of a vector field 
 along a curve 
 is necessarily covariantly constant, i.e., 
 satisfies
	
		
			  | 
			
			 (1) 
			 | 
		
	
for all 
 where, here, 
 denotes the unique covariant derivative of 
 associated to 
.
A standard result in differential geometry is that, under the above hypotheses, parallel transports are unique.
In addition to the above definition, some literature defines parallel transport in a more function analytic way. Indeed, given an interval 
 and a point 
, a parallel transport 
 of 
 along 
 is nothing more than a linear transformation
	
		
			  | 
			
			 (2) 
			 | 
		
	
which maps 
 to 
. It is obvious that this transformation is invertible, its inverse being given simply by parallel transport along the reversed portion of 
 from 
 to 
. The expression 
 has added benefit, too, because despite being defined intrinsically in terms of the affine connection 
 on 
, it also provides a mechanism whereby one can recover a manifold's affine connection given a collection 
 of parallel vector fields along a curve 
. In particular, if 
 and 
, then
	
		
			  | 
			
			 (3) 
			 | 
		
	
where 
 is the desired vector field given by the connection 
 and where 
.
REFERENCES:
Do Carmo, M. Riemannian Geometry. Boston, MA: Birkhäuser, 1993.
Spivak, M. A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd ed. Berkeley, CA: Publish or Perish Press, 1999.
				
				
					
					
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة