تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graph Thickness
المؤلف:
Alekseev, V. B. and Gonchakov, V. S
المصدر:
"Thickness of Arbitrary Complete Graphs." Mat. Sbornik 101
الجزء والصفحة:
...
24-4-2022
2481
Graph Thickness
The thickness (or depth) (Skiena 1990, p. 251; Beineke 1997) or
(Harary 1994, p. 120) of a graph
is the minimum number of planar edge-induced subgraphs
of
needed such that the graph union
(Skiena 1990, p. 251).
The thickness of a planar graph is therefore
, and the thickness of a nonplanar graph
satisfies
. A graph which is the union of two planar graph (i.e., that has thickness 1 or 2) is said to be a biplanar graph (Beineke 1997).
Determining the thickness of a graph is an NP-complete problem (Mansfeld 1983, Beineke 1997). Precomputed thicknesses for many small named or indexed graphs can be obtained in the Wolfram Language using GraphData[graph, "Thickness"].
A lower bound for the thickness of a graph is given by
(1) |
where is the number of edges,
is the number vertices, and
is the ceiling function (Skiena 1990, p. 251). The example above shows a decomposition of the complete graph
into three planar subgraphs. This decomposition is minimal, so
, in agreement with the bound
.
The thickness of a complete graph satisfies
(2) |
except for (Vasak 1976, Alekseev and Gonchakov 1976, Beineke 1997). For
, 2, ..., the thicknesses are therefore 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, ... (OEIS A124156).
The thickness of a complete bipartite graph is given by
(3) |
except possibly when and
are both odd and, taking
, there exists an even integer
with
(Beineke et al. 1964; Harary 1994, p. 121; Beineke 1997, where the ceiling in the exceptional condition given by Beineke 1997 has been corrected to a floor). The smallest such exceptional values are summarized in the following table.
13 | 17 | 4 |
17 | 21 | 5 |
19 | 29 | 6 |
19 | 47 | 7 |
21 | 25 | 6 |
23 | 75 | 9 |
25 | 29 | 7 |
25 | 59 | 9 |
According to Beineke (1997), the only subset of exceptional bipartite indices for are
,
,
,
, and
.
The thickness of is therefore given by
(4) |
(Harary 1994, p. 121), which for , 2, ... give the values 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, ... (OEIS A128929).
Finally, the thickness of a hypercube graph is given by
(5) |
(Harary 1994, p. 121), which for , 2, ... give the values 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, (OEIS A144075).
A number of variations of graph thickness such as outerplanar thickness, arboricity, book thickness, and toroidal thickness have also been introduced (Beineke 1997).
REFERENCES
Alekseev, V. B. and Gonchakov, V. S. "Thickness of Arbitrary Complete Graphs." Mat. Sbornik 101, 212-230, 1976.
Beineke, L. W. "Biplanar Graphs: A Survey." Computers Math. Appl. 34, 1-8, 1997.
Beineke, L. W. and Harary, F. "On the Thickness of the Complete Graph." Bull. Amer. Math. Soc. 70, 618-620, 1964.
Beineke, L. W. and Harary, F. "The Thickness of the Complete Graph." Canad. J. Math. 17, 850-859, 1965.
Beineke, L. W.; Harary, F.; and Moon; J. W. "On the Thickness of the Complete Bipartite Graph." Proc. Cambridge Philos. Soc. 60, 1-6, 1964.
Harary, F. "Covering and Packing in Graphs, I." Ann. New York Acad. Sci. 175, 198-205, 1970.
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 120-121, 1994.
Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 225, 1973.
Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.
Hearon, S. M. "Planar Graphs, Biplanar Graphs and Graph Thickness." Master of Arts thesis. San Bernadino, CA: California State University, San Bernadino, 2016.
Mansfeld, A. "Determining the Thickness of a Graph is NP-Hard." Math. Proc. Cambridge Philos. Soc. 93, 9-23, 1983.
Meyer, J. "L'épaisseur des graphes completes et
." J. Comp. Th. 9, 1970.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 251, 1990.
Sloane, N. J. A. Sequences A124156, A128929, and A144075 in "The On-Line Encyclopedia of Integer Sequences."Tutte, W. T. "The Thickness of a Graph." Indag. Math. 25, 567-577, 1963.
Vasak, J. M. "The Thickness of the Complete Graph." Not. Amer. Math. Soc. 23, A-479, 1976.West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, p. 261, 2000.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
