المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
قواعد في الإدارة / تقديم المنجزات الهامة
2025-01-13
قواعد الاهتمام بالبشر / حسن المعاشرة
2025-01-13
مبادئ رعاية الطفل
2025-01-13
الامراض والآفات التي تصيب الفول الرومي
2025-01-13
عندما يسيء طفلك التصرف ولا يستطيع البكاء: بناء حس الأمان
2025-01-13
مرحلة الروضة (٣-٥ سنوات): التعاطف
2025-01-13



منحني تكراري رائي J- Shaped Curve  
  
2220   02:27 صباحاً   التاريخ: 20-12-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 338-339
القسم : الرياضيات / الاحتمالات و الاحصاء /


أقرأ أيضاً
التاريخ: 22-3-2021 3616
التاريخ: 6-2-2016 1656
التاريخ: 20-4-2021 3088
التاريخ: 15-4-2021 1774

يمتاز هذا المنحني عن سواه من المنحنيات بأنه كلما ازدادت قيمة المتغير فيه تزداد التكرارات حتى يصل إلى نقطة معينة لا تعود بعدها قيمة المتغير إلى الانخفاض كما في الشكل :

والمنحني الرائي المعكوس وكما في الشكل , وكلاهما يسمى منحني ذو شعبة واحدة .

وأشهر مثال على المنحني الرائي المعكوس هو منحني توزيع ملكية الأراضي

في بعض البلدان حيث المساحات الصغيرة يمتلكها العدد الأكبر من السكان (التكرارات العليا) والمساحات الكبيرة يمتلكها العدد الأقل في السكان ( التكرارات الدنيا) .

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.