المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
ظهور التلسكوبات
2025-01-12
آثار فسخ عقد الزواج بعد الدخول بالنسبة للنفقة في قانون الاحوال الشخصية الكويتي
2025-01-12
نضج وحصاد وتخزين البسلة
2025-01-12
مقبرة (شيشنق الثالث)
2025-01-12
الفرعون شيشنق الرابع وآثاره
2025-01-12
مندوبات الصلاة
2025-01-12

تسميد الكمثري
2023-09-21
Introduction to Epigenetics II
15-6-2021
زوال الحيازة
3-8-2017
خنفساء الثمار الجافة Carpophilus hemipterus
8-1-2016
أحكام القرآن لأبي بكر أحمد بن علي الرازي الجصّاص
28-2-2016
بحوث التســـويق وأنظمة المعلومات التسويقية
13-9-2016

Wilhelm Lexis  
  
289   02:50 مساءاً   date: 22-12-2016
Author : Wilhelm Lexis
Book or Source : Neue Deutsche Biographie
Page and Part : ...


Read More
Date: 19-12-2016 306
Date: 8-12-2016 297
Date: 18-12-2016 139

Born: 17 July 1837 in Eschweiler (near Aachen), Germany

Died: 25 October 1914 in Göttingen, Germany


Wilhelm Lexis attended the University of Bonn where he was awarded a degree in mathematics and then went on to write a thesis on analytical mechanics. He graduated in 1859 and then went to Heidelberg where he undertook research in Bunsen's chemistry laboratories.

Despite the fact that his training up to this point had been a broad one, in 1861 Lexis went to Paris to study social sciences. These studies led to his first publication in 1870 which was on the export policies of France. Heiss writes in [4]:-

This work displays the feature that characterises his later economic writings: a scepticism towards "pure economics" and towards the application of supposedly descriptive mathematical models which have no reference to economic reality. Even in this early work he insisted that economic theory should be founded on quantitative economic data.

In 1872 Lexis was appointed as professor of economics at the University of Strassburg. He held this post for two years and during this time he worked on his second major publication on the theory of population which was published in 1875. By this time, however, he was in Dorpat having been appointed to the chair of geography, ethnology and statistics in 1874. Again he held this post for only two years before he was appointed to the chair of economics at Freiburg.

It was in Freiburg that Lexis made his major contributions to statistics. Zabell writes in [8]:-

Dissatisfied with the uncritical and usually unsupported assumption of statistical homogeneity in sampling, often made by Quetelet and his followers, Lexis devised a statistic Q, now called the 'Lexis ratio', to test this assumption and demonstrate its frequent invalidity.

From 1876-79 Lexis studied data presented as a series over time. He initiated the study of time series with his 1879 article On the theory of the stability of statistical series

Lexis required a binomial dispersion for his series to be stable and this ruled out most interesting series. However it applied to the problem of year to year fluctuation of the sex ratio among children born in a city. It posed the question of whether an empirical index of dispersion is consistent with the assumption that sex is governed by a simple chance mechanism. As Stigler writes in [5]:-

Many scientists attempted to adapt probability-based methods to social science problems, including Quetelet and Lexis, but in the end they were frustrated, Quetelet because his methods were too insensitive to segregate his data into categories amenable to statistical analysis, Lexis because his binomial models were insufficiently rich for interesting applications.

After what is not much more than a three year period working on statistics in Freiburg, he began to produce a series of papers on economics. Lexis left Freiburg in 1884 to take up the chair of economics at the University of Breslau, then in 1887 he made his final career move when he accepted the chair of political science at Göttingen.

Rather than concentrate on any one of his diverse interests as his career progressed, Lexis studied and wrote on a wider and wider collection of topics. In addition to studying economics, the theory of population, and statistics, he also worked on the production of an economic encyclopaedia, edited a series of works on education in general and university education in particular, and was the director of the first institute of actuHelvetica science in Germany.


 

Books:

  1. Wilhelm Lexis, Neue Deutsche Biographie (Berlin, 1952-).

Articles:

  1. A A Chuprov, Wilhelm Lexis, Izv. Akad. Nauk Pgd. VI 10 (1916), 1789-1798.
  2. S Gutiérrez Cabria, Development of statistical inference from its beginnings to the beginning of this century (Spanish), Estadist. Espanola No. 98 (1983), 9-29.
  3. K-P Heiss, Wilhelm Lexis, International Encyclopedia of the Social Sciences Vol 9 (New York, 1968), 271-276.
  4. S M Stigler, The measurement of uncertainty in nineteenth-century social science, in The probabilistic revolution Vol. 1 (Cambridge, MA-London, 1987), 287-292.
  5. S M Stigler, The History of Statistics. The Measurement of Uncertainty before 1900 (Cambridge, Mass.-London, 1986), 222-.
  6. L von Bortkiewicz, Wilhelm Lexis, Bull. Int. Statist. Inst. 20 (1915), 328-332.
  7. S L Zabell, Wilhelm Lexis, in N L Johnson and S Kotz (eds.), Leading personalities in statistical sciences (New York, 1997), 305-307.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.