Read More
Date: 8-8-2021
1103
Date: 26-9-2016
1327
Date: 24-7-2021
2235
|
Definition Let R be a unital commutative ring, and let let M and N and P be R-modules. A function f: M × N → P is said to be R-bilinear if
f(x1 + x2, y) = f(x1, y) + f(x2, y),
f(x, y1 + y2) = f(x, y1) + f(x, y2),
and
f(rx, y) = f(x, ry) = rf(x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R.
Proposition 1.1 Let R be a unital commutative ring, and let M and N be modules over R. Then there exists an R-module M ⊗R N and an R-bilinear function jM×N : M × N → M ⊗R N, where M ⊗R N and jM×N satisfy the following universal property:
given any R-module P, and given any R-bilinear function f: M × N → P, there exists a unique R-module homomorphism θ: M ⊗R N → P such that f = θ ◦ jM×N .
Proof Let FR(M × N) be the free R-module on the set M × N, and let iM×N : M ×N → FR(M ×N) be the natural embedding of M ×N in FR(M ×N). Then, given any R-module P, and given any function f: M × N → P, there exists a unique R-module homomorphism ϕ: FR(M × N) → P such that ϕ ◦ iM×N = f (Proposition 1.1)in(Construction of Free Modules).
Let K be the submodule of FR(M × N) generated by the elements
iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y),
iM×N (x, y1 + y2) − iM×N (x, y1) − iM×N (x, y2),
iM×N (rx, y) − riM×N (x, y),
iM×N (x, ry) − riM×N (x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. Also let M ⊗R N be the quotient module FR(M×N)/K, let π: FR(M×N) → M⊗RN be the quotient homomorphism, and let jM×N : M×N → M⊗RN be the composition function π ◦ iM×N . Then
jM×N (x1 + x2, y) − jM×N (x1, y) − jM×N (x2, y)
= π(iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y)) = 0
for all x1, x2 ∈ M and y ∈ N. Similarly
jM×N (x, y1 + y2, y) − jM×N (x, y1) − jM×N (x, y2) = 0
for all x ∈ M and y1, y2 ∈ N, and
jM×N (rx, y) − rjM×N (x, y) = π(iM×N (rx, y) − riM×N (x, y)) = 0,
jM×N (x, ry) − rjM×N (x, y) = π(iM×N (x, ry) − riM×N (x, y)) = 0
for all x ∈ M, y ∈ N and r ∈ R. It follows that
jM×N (x1 + x2, y) = jM×N (x1, y) + jM×N (x2, y),
jM×N (x, y1 + y2) = jM×N (x, y1) + jM×N (x, y2),
and
jM×N (rx, y) = jM×N (x, ry) = rjM×N (x, y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. Thus jM×N : M ×N → M ⊗R N is an R-bilinear function.
Now let P be an R-module, and let f: M × N → P be an R-bilinear function. Then there is a unique R-module homomorphism ϕ: FR(M ×N) →P such that f = ϕ ◦ iM×N . Then
ϕ(iM×N (x1 + x2, y) − iM×N (x1, y) − iM×N (x2, y))
= f(x1 + x2, y) − f(x1, y) − f(x2, y) = 0
for all x1, x2 ∈ M and y ∈ N. Similarly
ϕ(iM×N (x, y1 + y2) − iM×N (x, y1) − iM×N (x, y2)) = 0
for all x ∈ M and y1, y2 ∈ N, and
ϕ(iM×N (rx, y) − riM×N (x, y)) = f(rx, y) − rf(x, y) = 0,
ϕ(iM×N (x, ry) − riM×N (x, y)) = f(x, ry) − rf(x, y) = 0
for all x ∈ M, y ∈ N and r ∈ R. Thus the submodule K of FR(M × N) is generated by elements of ker ϕ, and therefore K ⊂ ker ϕ. It follows that ϕ: FR(M×N) → P induces a unique R-module homomorphism θ: M⊗RN → P, where M ⊗R N = FR(M × N)/K, such that ϕ = θ ◦ π. Then
θ ◦ jM×N = θ ◦ π ◦ iM×N = ϕ ◦ iM×N = f.
Moreover is ψ: M ⊗R N → P is any R-module homomorphism satisfying ψ ◦ jM×N = f then ψ ◦ π ◦ iM×N = f. The uniqueness of the homomorphism ϕ: FR(M × N) → P then ensures that ψ ◦ π = ϕ = θ ◦ π. But then ψ = θ, because the quotient homomorphism π: FR(M ×N) → M ⊗R N is surjective. Thus the homomorphism θ is uniquely determined, as required.
Let M and N be modules over a unital commutative ring R. The module M ⊗R N constructed as described in the proof of Proposition 1.1 is referred to as the tensor product M ⊗R N of the modules M and N over the ring R.
Given x ∈ M and y ∈ N, we denote by x⊗y the image j(x, y) of (x, y) under the bilinear function jM×N : M × N → M ⊗R N. We call this element thetensor product of the elements x and y. Then
(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y, x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2,
and
(rx) ⊗ y = x ⊗ (ry) = r(x ⊗ y)
for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and r ∈ R. The universal property characterizing tensor products described in Proposition 1.1 then yields the following result.
Corollary 1.2 Let M and N be modules over a unital commutative ring R, let M ⊗R N be the tensor product of M and N over R. Then, given any Rmodule P, and given any R-bilinear function f: M × N → P, there exists a unique R-module homomorphism θ: M⊗RN → P such that θ(x⊗y) = f(x, y) for all x ∈ M and y ∈ N.
The following corollary shows that the universal property stated in Proposition 1.1 characterizes tensor products up to isomorphism.
Corollary 1.3 Let M, N and T be modules over a unital commutative ring R, let M ⊗R N be the tensor product of M and N, and let k: M ×N → T be an R-bilinear function. Suppose that k: M ×N → T satisfies the universal property characterizing tensor products so that, given any R-module P, and given any R-bilinear function f: M ×N → P, there exists a unique R-module homomorphism ψ: T → P such that f = ψ◦k. Then T ≅ M ⊗R N, and there is a unique R-isomorphism ϕ: M ⊗R N → T such that k(x, y) = ϕ(x ⊗R y) for all x ∈ M and y ∈ N.
Proof It follows from Corollary 8.8 that there exists a unique R-module homomorphism ϕ: M ⊗R N → T such that k(x, y) = ϕ(x ⊗ y) for all x ∈ M and y ∈ N. Also universal property satisfied by the bilinear function k: M × N → T ensures that there exists a unique R-module homomorphism ψ: T → M ⊗R N such that x ⊗ y = ψ(k(x, y)) for all x ∈ M and y ∈ N.
Then ψ(ϕ(x ⊗ y)) = x ⊗ y for all x ∈ M and y ∈ M. But the universal property characterizing the tensor product ensures that any homomorphism from M ×R N to itself is determined uniquely by its action on elements of the form x ⊗ y, where x ∈ M and y ∈ N. It follows that ψ ◦ ϕ is the identity automorphism of M ⊗R N. Similarly ϕ◦ψ is the identity automorphism of T.
It follows that ϕ: M⊗RN → T is an isomorphism of R-modules whose inverse is ψ: T → M ⊗R N. The isomorphism ϕ has the required properties.
Corollary 1.4 Let M be a module over a unital commutative ring R, and let κ: R ⊗R M → M be the R-module homomorphism defined such that κ(r ⊗ x) = rx for all r ∈ R and x ∈ M. Then κ is an isomorphism, and thus R ⊗R M ≅ M.
Proof Let P be an R-module, and let f: R × M → P be an R-bilinear function. Let ψ: M → P be defined such that ψ(x) = f(1R, x) for all x ∈ M, where 1R denotes the identity element of the ring R. Then ψ is an R-module homomorphism. Moreover f(r, x) = rf(1R, x) = f(1R, rx) = ψ(rx) for all x ∈ M and r ∈ R. Thus f = ψ ◦ k, where k: R × M → M is the R-bilinear function defined such that k(r, x) = rx for all r ∈ R and x ∈ M. The result therefore follows on applying Corollary 1.3.
Corollary 1.5 Let M, M`, N and N` be modules over a unital commutative ring R, and let ϕ: M → M`and ψ: N → N` be R-module homomorphisms.
Then ϕ and ψ induce an R-module homomorphism ϕ⊗ψ: M ⊗R N → M` ⊗RN` , where (ϕ ⊗ ψ)(m ⊗ n) = ϕ(m) ⊗ ψ(n) for all m ∈ M and n ∈ N.
Proof The result follows immediately on applying Corollary 1.2 to the bilinear function from M × N to M0 ⊗R N` that sends (m, n) to ϕ(m) ⊗ ψ(n) for all m ∈ M and n ∈ N.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|