النمط الأول
النمط الثاني
الرئيسية
الأخبار
صور
فيديو
صوت
أقلام
مفتاح
رشفات
المشكاة
منشور
اضاءات
ثقف
قصص
التحليل العددي
عدد المواضيع في هذا القسم : 58
عدد الصفحات : 4
انت في الصفحة : 1
Filon,s Integration Formula
writer : Abramowitz, M. and Stegun, I. A.
source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
page : ...
1256
more
Legendre-Gauss Quadrature
writer : Abbott, P
source : "Tricks of the Trade: Legendre-Gauss Quadrature." Mathematica J. 9
1011
Maehly,s Procedure
writer : Bauer, F. L. and Stoer, J.
source : "Algorithm 105: Newton Maehly." J. CACM 5
1524
Cubature
writer : Cools, R
source : "Monomial Cubature Rules Since "Stroud": A Compilation--Part 2." J. Comput. Appl. Math. 112
1061
Weddle,s Rule
writer : Beyer, W. H
source : CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
869
Trapezoidal Rule
1393
Graeffe,s Method
writer : Cajori, F.
source : "The Dandelin-Gräffe Method." A History of Mathematics, 5th ed. New York: Chelsea
2208
Chebyshev Quadrature
writer : Beyer, W. H.
796
Simpson,s Rule
1981
Gauss-Jacobi Mechanical Quadrature
writer : Szegö, G
source : Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc.
1159
Point Estimation Theory
writer : Lehmann, E. L. and Casella, G
source : Theory of Point Estimation. New York: Springer-Verlag, 1998.
1586
Shovelton,s Rule
writer : King, A. E
source : "Approximate Integration. Note on Quadrature Formulae: Their Construction and Application to Actuarial Functions." Trans. Faculty of Actuaries 9,
1155
Chebyshev-Radau Quadrature
page : p. 466
922
Descartes, Sign Rule
writer : Hall, H. S. and Knight, S. R
source : Higher Algebra: A Sequel to Elementary Algebra for Schools. London: Macmillan
1355
Lobatto Quadrature
2027
T-Integration
writer : Fowler, M
source : "A New Numerical Method for Simulation." Simulation 6
1141
Convergence Improvement
2172
Secant Method
writer : Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
source : "Secant Method, False Position Method, and Ridders Method." §9.2 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press
page : pp. 347-352
1900
اشترك بقناتنا على التلجرام ليصلك كل ما هو جديد