المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الاسطرلاب
2025-01-12
ظهور التلسكوبات
2025-01-12
آثار فسخ عقد الزواج بعد الدخول بالنسبة للنفقة في قانون الاحوال الشخصية الكويتي
2025-01-12
نضج وحصاد وتخزين البسلة
2025-01-12
مقبرة (شيشنق الثالث)
2025-01-12
الفرعون شيشنق الرابع وآثاره
2025-01-12


Slater,s Formula  
  
1778   06:28 مساءً   date: 18-6-2019
Author : Slater, L. J.
Book or Source : "An Elementary Proof of the _4F_3[1] Summation Theorem." §2.7.1 in Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press
Page and Part : p. 31


Read More
Date: 28-8-2019 1792
Date: 16-4-2019 2427
Date: 5-9-2019 1391

Slater's Formula

Slater (1960, p. 31) terms the identity

 

 _4F_3[a,1+1/2a,b,-n; 1/2a,1+a-b;1+a+n]=((1+a)_n(1/2+1/2a-b)_n)/((1/2+1/2a)_n(1+a-b)_n)

for n a nonnegative integer the "_4F_3[1] summation theorem." Here, _4F_3(a_1,...,a_4;b_1,b_2,b_3) is a generalized hypergeometric function with argument z=1 and (a)_z is a Pochhammer symbol.

This is a special case of the more general identity

 _4F_3(a,b,c,1/2a+1;1/2a,a-b+1,a-c+1;1) 
 =(Gamma((a+1)/2)Gamma(a-b+1)Gamma(a-c+1)Gamma((a+1)/2-b-c))/(Gamma(a+1)Gamma((a+1)/2-b)Gamma((a+1)/2-c)Gamma(a-b-c+1)),

which holds for R[a-2b-2b]>-1 (O. Marichev, pers. comm., May 16, 2008).


REFERENCES:

Slater, L. J. "An Elementary Proof of the _4F_3[1] Summation Theorem." §2.7.1 in Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press, p. 31, 1960.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.