Read More
Date: 3-11-2020
![]()
Date: 25-10-2020
![]()
Date: 19-2-2020
![]() |
Euler's continued fraction is the name given by Borwein et al. (2004, p. 30) to Euler's formula for the inverse tangent,
![]() |
An even more famous continued fraction related to Euler which is perhaps a more appropriate recipient of the appellation "Euler's continued fraction" is the simple continued fraction for e, namely
![]() |
REFERENCES:
Borwein, J.; Bailey, D.; and Girgensohn, R. "Euler's Continued Fraction." §1.8.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, p. 30, 2004.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|