Read More
Date: 19-9-2020
![]()
Date: 24-12-2019
![]()
Date: 23-2-2020
![]() |
A figurate number, also (but mostly in texts from the 1500 and 1600s) known as a figural number (Simpson and Weiner 1992, p. 587), is a number that can be represented by a regular geometrical arrangement of equally spaced points. If the arrangement forms a regular polygon, the number is called a polygonal number. The polygonal numbers illustrated above are called triangular, square, pentagonal, and hexagonal numbers, respectively. Figurate numbers can also form other shapes such as centered polygons, L-shapes, three-dimensional solids, etc.
The th regular
-polytopic number is given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where is the multichoose function,
is a binomial coefficient, and
is a rising factorial. Special cases therefore include the triangular numbers
![]() |
(4) |
tetrahedral numbers
![]() |
(5) |
pentatope numbers
![]() |
(6) |
and so on (Dickson 2005, p. 7).
The following table lists the most common types of figurate numbers.
figurate number | formula |
biquadratic number | ![]() |
centered cube number | ![]() |
centered pentagonal number | ![]() |
centered square number | ![]() |
centered triangular number | ![]() |
cubic number | ![]() |
decagonal number | ![]() |
gnomonic number | ![]() |
Haűy octahedral number | ![]() |
Haűy rhombic dodecahedral number | ![]() |
heptagonal number | ![]() |
hex number | ![]() |
heptagonal pyramidal number | ![]() |
hexagonal number | ![]() |
hexagonal pyramidal number | ![]() |
octagonal number | ![]() |
octahedral number | ![]() |
pentagonal number | ![]() |
pentagonal pyramidal number | ![]() |
pentatope number | ![]() |
pronic number | ![]() |
rhombic dodecahedral number | ![]() |
square number | ![]() |
square pyramidal number | ![]() |
stella octangula number | ![]() |
tetrahedral number | ![]() |
triangular number | ![]() |
truncated octahedral number | ![]() |
truncated tetrahedral number | ![]() |
REFERENCES:
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 30-62, 1996.
Dickson, L. E. "Polygonal, Pyramidal, and Figurate Numbers." Ch. 1 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 1-39, 2005.
Goodwin, P. "A Polyhedral Sequence of Two." Math. Gaz. 69, 191-197, 1985.
Guy, R. K. "Figurate Numbers." §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 147-150, 1994.
Kraitchik, M. "Figurate Numbers." §3.4 in Mathematical Recreations. New York: W. W. Norton, pp. 66-69, 1942.
Savin, A. "Shape Numbers." Quantum 11, 14-18, 2000.
Simpson, J. A. and Weiner, E. S. C. (Preparers). The Compact Oxford English Dictionary, 2nd ed. Oxford, England: Clarendon Press, 1992.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|