المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10885 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Introduction to dendritic cells  
  
61   10:46 صباحاً   date: 2025-01-29
Author : Rebecca Ashfield, Angus Nnamdi Oli, Charles Esimone, Linda Anagu
Book or Source : Vaccinology and Methods in Vaccine Research
Page and Part : P57-58


Read More
Date: 6-11-2015 3521
Date: 2025-01-05 206
Date: 6-11-2015 8069

Dendritic cells (DCs) are amongst the earliest identified accessory/nonlymphoid immune cells; they were described in 1973 by Ralph Steinman and Zanvil Cohn as the immune system’s most powerful antigen-presenting cells (APCs) (Sabado et al., 2017). As APCs, their main role is to locate and process antigen, and dis play antigenic peptides on human leukocyte antigen (HLA) proteins [now referred to as major histocompatibility complex (MHC) molecules], which are present on cellular surfaces. The displayed antigenic peptides are recognized by T cells, which culminates in diverse immunological responses (Steinman, 2012), and thus DCs serve as a link between the adaptive and innate immune systems. They also secrete cytokines and growth factors that control the function of diverse immune cells (O’Keeffe et al., 2015), and in particular maintain a balance between inflammatory and tolerogenic T cell responses (Simones et al., 2010). Originating in the bone marrow, DCs differentiate into cells predominantly found in mucosa, skin, and lymphoid tissues.

DCs play a crucial role in a variety of diseases including cancer, hypersensitivity responses, respiratory diseases, infection, and autoimmunity. Antigen recognition of MHC-II peptide epitopes by naïve CD4+ cells results in differentiation into Th1, Th2, and Th17 effector cells  (Nakano et al., 2009; Yamane & Paul, 2013). In skin hypersensitivity, CD4+ and CD8+ T lymphocytes are activated, leading to secretion of cytokines, and inflammation mediated in part by chemotaxis, resulting in infiltration of more immune cells (Kaplan et al., 2012; Yazdi et al., 2016). In respiratory diseases such as asthma, DCs capture allergens within the airways, leading to a Th2 response, resulting in inflammation of the airway. DCs are also involved in other lung-related inflammatory diseases (Upham & Hughes, 2006)

DCs can induce and modulate immunological tolerance in addition to stimulating the immune system. For example, an in vivo animal study demonstrated that depletion of DCs (by targeting a DC transcription factor engineered to express diphtheria toxin receptor) leads to lympho-angiogenesis and myeloproliferative disorders, emphasizing the role of DCs in maintaining immune tolerance (Meredith et al., 2012). Central tolerance depends predominantly on thymic DCs displaying self-antigens to T cells. Thymic DCs delete auto-reactive lymphocytes by negative selection, and positively select regulatory T cells (Treg) for the maintenance of immunological tolerance toward self antigens. Thymic DCs that play major roles in central tolerance include migratory DCs (CD8α- CD11b+1SIRPα+), resident DCs (CD8α+SIRPα-), and plasmacytoid DCs (pDCs; CD11cintCD45RAint) (Audiger et al., 2017; Cools et al., 2007; Hilkens et al., 2010).

DCs have been employed to induce cytotoxic T lymphocyte (CTL)-mediated immune responses against tumor cells in cancer immunotherapy (Lee & Radford, 2019), and DC cancer vaccines have been developed as personalized cancer therapy (Perez, & De Palma, 2019). DCs not only stimulate CD8+ T lymphocytes to produce apoptosis-inducing responses, but also trigger NK cells to release perforins and granzymes capable of killing tumor cells (Castell-Rodr´ıguez et al., 2017).

DCs are found in two forms: mature and immature. Immature DCs (iDCs) recognize disease-causing organisms using pattern recognition receptors (PRRs); these PRRs recognize damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) on pathogen surfaces (Hemmi & Akira, 2005), leading to phagocytosis and lysosomal digestion. Maturation of DCs is then initiated, and DCs move into lymph nodes to deliver antigen to naive T cells (Mbongue et al., 2017). Mature (mDCs) and iDCs upregulate costimulatory proteins (CD40, CD80, CD86, and CD83) that help to stimulate T cells, and CCR7, a chemotactic receptor that encourages homing of lymphocytes and DCs to lymph nodes. The DC maturation process is an important process in vaccine development, as mDCs are capable of eliciting strong immune responses.

In addition to antigen presentation on MHC-II molecules, which is necessary for the activation of CD4 T cells, DCs can activate CD8 cytotoxic T cells (CTL) via a process known as cross-presentation or cross-priming. In this process, antigens or pathogens that have undergone phagocytosis are processed in endosomes and resulting peptide fragments are loaded onto Class I MHC rather than Class II. This is an important mechanism in vaccine-induced immunity for cancer, and intracellular pathogens, which are targeted by CTL.

 

 

 

 

 

 

References

--------------

Sabado, R. L., Balan, S., & Bhardwaj, N. (2017). Dendritic cell-based immunotherapy. Cell Research, 27(1), 74 95. Available from https://doi.org/10.1038/cr.2016.157.

 

Steinman, R. M. (2012). Decisions about dendritic cells: Past, present, and future. Annual Review of Immunology, 30,1 22. Available from https://doi.org/10.1146/annurev-immunol 100311-102839.

 

O’Keeffe, M., Mok, W. H., & Radford, K. J. (2015). Human dendritic cell subsets and function in health and disease. Cellular and Molecular Life Sciences, 72(22), 4309 4325. Available from https://doi.org/10.1007/s00018-015-2005-0.

 

Simones, T., Shepherd, D. M., & Moser, M. (2010). Dendritic cells. (2nd ed., pp. 155 170). Comprehensive toxicology, (Vol. 5, pp. 155 170). Elsevier Inc. Available from https://doi. org/10.1016/B978-0-08-046884-6.00608-4.

 

Nakano, H., Lin, K. L., Yanagita, M., Charbonneau, C., Cook, D. N., Kakiuchi, T., & Gunn, M. D (2009). Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nature Immunology, 10(4), 394 402. Available from https://doi.org/10.1038/ni.1707.

 

Yamane, H, & Paul, W. E. (2013). Early signaling events that underlie fate decisions of naive CD4(1) T cells toward distinct T-helper cell subsets. Immunological reviews, 252(1), 12 23. Available from https://doi.org/10.1111/imr.12032

 

Kaplan, D. H., Igy´ arto ´, B. Z., & Gaspari, A. A. (2012). Early immune events in the induction of allergic contact dermatitis. Nature reviews. Immunology, 12(2), 114 124. Available from https://doi.org/10.1038/nri3150.

 

Yazdi, A. S, Ro ¨cken, M, & Ghoreschi, K (2016). Cutaneous immunology: basics and new concepts. Seminars in immunopathology, 38(1), 3 10. Available from https://doi.org/10.1007/ s00281-015-0545-x.

 

Upham, J. W, & Hughes, T. L (2006). Dendritic Cells. In G. J. Laurent, & S. D Shapiro (Eds.), Encyclopedia of Respiratory Medicine. (Vol. 3). Academic Press Elsevier.

 

Meredith, M. M., Liu, K., Darrasse-Jeze, G., Kamphorst, A. O., Schreiber, H. A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K. H., Niec, R. E., & Nussenzweig, M. C. (2012). Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. Journal of Experimental Medicine, 209(6), 1153 1165. Available from https://doi.org/10.1084/jem.20112675.

 

Audiger, C., Rahman, M. J., Yun, T. J., Tarbell, K. V., & Lesage, S. (2017). The importance of dendritic cells in maintaining immune tolerance. Journal of Immunology, 198(6), 2223 2231. Available from https://doi.org/10.4049/jimmunol.1601629.

 

Cools, N., Ponsaerts, P., Van Tendeloo, V. F. I., & Berneman, Z. N. (2007). Regulatory T cells and human disease. Clinical and Developmental Immunology, 2007. Available from https:// doi.org/10.1155/2007/89195

 

Hilkens, C. M. U., Isaacs, J. D., & Thomson, A. W. (2010). Development of dendritic cell-based immunotherapy for autoimmunity. International Reviews of Immunology, 29(2), 156 183. Available from https://doi.org/10.3109/08830180903281193.

 

Lee, Y. S., & Radford, K. J. (2019). The role of dendritic cells in cancer. International review of cell and molecular biology, 348, 123 178. Available from https://doi.org/10.1016/bs. ircmb.2019.07.006.

 

Perez, C. R., & De Palma, M (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature communications, 10(1), 1 10. Available from https://doi.org/ 10.1038/s41467-019-13368-y

 

Castell-Rodr´ ıguez, A., Pin˜o ´n-Z´ arate, G., Herrera-Enr´ ıquez, M., Jarqu´ ın-Y´ an ˜ez, K., & Medina Solares, I. (2017). Dendritic cells: Location, function, and clinical implications. Biology of myelomonocytic cells. London: Intech Open. Available from https://doi.org/10.5772/ intechopen.68352.

 

Hemmi, H., & Akira, S. (2005). TLR signalling and the function of dendritic cells. Chemical Immunology and Allergy, 86, 120 135. Available from https://doi.org/10.1159/000086657.

 

Mbongue, J. C., Nieves, H. A., Torrez, T. W., & Langridge, W. H. R. (2017). The role of dendritic cell maturation in the induction of insulin-dependent diabetes mellitus. Frontiers in Immunology, 8. Available from https://doi.org/10.3389/fimmu.2017.00327.

 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.