Read More
Date: 30-8-2016
1151
Date: 23-8-2016
1291
Date: 29-8-2016
1172
|
Momentum Perturbation
A particle of mass m moves in one dimension according to the Hamiltonian
(1)
(2)
All eigenfunctions ѱn(x) and eigenvalues En are known. Suppose we add a term to the Hamiltonian, where λ and m are constants and p is the momentum operator:
(3)
Derive an expression for the eigenvalues and eigenstates of the new Hamiltonian H.
SOLUTION
The first step is to rewrite the Hamiltonian by completing the square on the momentum operator:
(1)
The constant just shifts the zero of the momentum operator. The rewritten Hamiltonian in (1) suggests the perturbed eigenstates:
(2)
The action of the displaced momentum operator p + λ on the new eigenstates is
(3)
so the Hamiltonian gives
(4)
and the eigenvalues are simply
(5)
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|