1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الميكانيك :

Finding the “apparent” motion

المؤلف:  Richard Feynman, Robert Leighton and Matthew Sands

المصدر:  The Feynman Lectures on Physics

الجزء والصفحة:  Volume I, Chapter 34

2024-03-26

1070

Fig. 34–2. A geometrical solution of Eq. (34.5) to find x′(t).

 

The above equation has an interesting simplification. If we disregard the uninteresting constant delay R0/c, which just means that we must change the origin of t by a constant, then it says that

Now we need to find x′ and y′ as functions of t, not τ, and we can do this in the following way: Eq. (34.5) says that we should take the actual motion and add a constant (the speed of light) times τ. What that turns out to mean is shown in Fig. 34–2. We take the actual motion of the charge (shown at left) and imagine that as it is going around it is being swept away from the point P at the speed c (there are no contractions from relativity or anything like that; this is just a mathematical addition of the cτ). In this way we get a new motion, in which the line-of-sight coordinate is ct, as shown at the right. (The figure shows the result for a rather complicated motion in a plane, but of course the motion may not be in one plane—it may be even more complicated than motion in a plane.) The point is that the horizontal (i.e., line-of-sight) distance now is no longer the old z, but is z+cτ, and therefore is ct. Thus we have found a picture of the curve, x′ (and y′) against t! All we have to do to find the field is to look at the acceleration of this curve, i.e., to differentiate it twice. So the final answer is: in order to find the electric field for a moving charge, take the motion of the charge and translate it back at the speed c to “open it out”; then the curve, so drawn, is a curve of the x′ and y′ positions of the function of t. The acceleration of this curve gives the electric field as a function of t. Or, if we wish, we can now imagine that this whole “rigid” curve moves forward at the speed c through the plane of sight, so that the point of intersection with the plane of sight has the coordinates x′ and y′. The acceleration of this point makes the electric field. This solution is just as exact as the formula we started with—it is simply a geometrical representation.

 

Fig. 34–3. The x′(t) curve for a particle moving at constant speed v=0.94c in a circle.

 

If the motion is relatively slow, for instance if we have an oscillator just going up and down slowly, then when we shoot that motion away at the speed of light, we would get, of course, a simple cosine curve, and that gives a formula we have been looking at for a long time: it gives the field produced by an oscillating charge. A more interesting example is an electron moving rapidly, very nearly at the speed of light, in a circle. If we look in the plane of the circle, the retarded x′(t) appears as shown in Fig. 34–3. What is this curve? If we imagine a radius vector from the center of the circle to the charge, and if we extend this radial line a little bit past the charge, just a shade if it is going fast, then we come to a point on the line that goes at the speed of light. Therefore, when we translate the motion back at the speed of light, that corresponds to having a wheel with a charge on it rolling backward (without slipping) at the speed c; thus we find a curve which is very close to a cycloid—it is called a curtate cycloid. If the charge is going very nearly at the speed of light, the “cusps” are very sharp indeed; if it went at exactly the speed of light, they would be actual cusps, infinitely sharp. “Infinitely sharp” is interesting; it means that near a cusp the second derivative is enormous. Once in each cycle we get a sharp pulse of electric field. This is not at all what we would get from a nonrelativistic motion, where each time the charge goes around there is an oscillation which is of about the same “strength” all the time. Instead, there are very sharp pulses of electric field spaced at time intervals T0 apart, where T0 is the period of revolution. These strong electric fields are emitted in a narrow cone in the direction of motion of the charge. When the charge is moving away from P, there is very little curvature and there is very little radiated field in the direction of P.

EN

تصفح الموقع بالشكل العمودي