Read More
Date: 1-12-2019
![]()
Date: 12-2-2020
![]()
Date: 23-12-2019
![]() |
To define a recurring digital invariant of order , compute the sum of the
th powers of the digits of a number
. If this number
is equal to the original number
, then
is called a
-Narcissistic number. If not, compute the sums of the
th powers of the digits of
, and so on. If this process eventually leads back to the original number
, the smallest number in the sequence
is said to be a
-recurring digital invariant. For example,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
so 55 is an order 3 recurring digital invariant. The following table gives recurring digital invariants of orders 2 to 10 (Madachy 1979).
order | RDI | cycle lengths |
2 | 4 | 8 |
3 | 55, 136, 160, 919 | 3, 2, 3, 2 |
4 | 1138, 2178 | 7, 2 |
5 | 244, 8294, 8299, 9044, 9045, 10933, | 28, 10, 6, 10, 22, 4, 12, 2, 2 |
24584, 58618, 89883 | ||
6 | 17148, 63804, 93531, 239459, 282595 | 30, 2, 4, 10, 3 |
7 | 80441, 86874, 253074, 376762, | 92, 56, 27, 30, 14, 21 |
922428, 982108, five more | ||
8 | 6822, 7973187, 8616804 | |
9 | 322219, 2274831, 20700388, eleven more | |
10 | 20818070, five more |
REFERENCES:
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 163-165, 1979.
|
|
دراسة تكشف "مفاجأة" غير سارة تتعلق ببدائل السكر
|
|
|
|
|
أدوات لا تتركها أبدًا في سيارتك خلال الصيف!
|
|
|
|
|
العتبة العباسية المقدسة تؤكد الحاجة لفنّ الخطابة في مواجهة تأثيرات الخطابات الإعلامية المعاصرة
|
|
|