المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

Proof
27-2-2016
التبقع الألترناري في البامياء
16-1-2022
الخواص الكيميائية والفيزيائية
4-7-2018
أحوال عدد من رجال الأسانيد / المعلّى بن محمد.
2024-04-06
ClpAP and ClpXP Proteinases
23-12-2015
Gaspard Monge
23-3-2016

Landau-Ramanujan Constant  
  
1024   04:30 مساءً   date: 27-12-2020
Author : Berndt, B. C
Book or Source : Ramanujan,s Notebooks, Part IV. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 11-3-2020 696
Date: 12-9-2020 798
Date: 17-12-2020 8637

Landau-Ramanujan Constant

Let S(x) denote the number of positive integers not exceeding x which can be expressed as a sum of two squares (i.e., those n<=x such that the sum of squares function r_2(n)>0). For example, the first few positive integers that can be expressed as a sum of squares are

1 = 0^2+1^2

(1)

2 = 1^2+1^2

(2)

4 = 0^2+2^2

(3)

5 = 1^2+2^2

(4)

8 = 2^2+2^2

(5)

(OEIS A001481), so S(1)=1S(2)=2S(4)=3S(5)=4S(8)=5, and so on. Then

 lim_(x->infty)(sqrt(lnx))/xS(x)=K,

(6)

as proved by Landau (1908), where K is a constant. Ramanujan independently stated the theorem in the slightly different form that the number of numbers between A and x which are either squares of sums of two squares is

 S(x)=Kint_A^x(dt)/(sqrt(lnt))+theta(x),

(7)

where K approx 0.764 and theta(x) is very small compared with the previous integral (Berndt and Rankin 1995, p. 24; Hardy 1999, p. 8; Moree and Cazaran 1999).

Note that for n>1r_2(n)>0 iff n is not divisible by a prime power p^m with p=3 (mod 4) and m odd.

LandauRamanujanConstant

The constant has numerical value

 K=0.764223653...

(8)

(OEIS A064533). However, the convergence to the constant K, known as the Landau-Ramanujan constant and sometimes also denoted lambda, is very slow. The following table summarizes the values of the left side of equation (7) for the first few powers of 10, where the sequence of S(10^n) is (OEIS A164775).

x S(x) (sqrt(lnx))/xS(x)
10^1 7 1.062199
10^2 43 0.922765
10^3 330 0.867326
10^4 2749 0.834281
10^5 24028 0.815287
10^6 216341 0.804123
10^7 1985459 0.797109
10^8 18457847 0.792198
10^9 173229058 0.788587
10^(10) 1637624156 0.785818

An exact formula for the constant is given by

 K=1/(sqrt(2))product_(p prime ; = 3 (mod 4))(1-1/(p^2))^(-1/2)

(9)

(Landau 1908; Le Lionnais 1983, p. 31; Berndt 1994; Hardy 1999; Moree and Cazaran 1999), and an equivalent formula is given by

 K=pi/4product_(p prime ; = 1 (mod 4))(1-1/(p^2))^(1/2).

(10)

Flajolet and Vardi (1996) give a beautiful formula with fast convergence

 K=1/(sqrt(2))product_(n=1)^infty[(1-1/(2^(2^n)))(zeta(2^n))/(beta(2^n))]^(1/2^(n+1)),

(11)

where beta(s) is the Dirichlet beta function.

Another closed form is

 K=lim_(n->infty)(sqrt(lnn))/nsum_(k=1)^n[1-delta_(0,r_2(k))],

(12)

where delta_(i,j) is the Kronecker delta and r_2(k) is the sum of squares Function.

W. Gosper used the related formula

 K=1/2[1/(Psi(2)-1)]^(sqrt(2))product_(k=2)^infty[1/(-Psi(2^k)-1)]^(1/(2^(k+1))),

(13)

where

 Psi(m)=(mpsi_(m-1)(1/4))/(pi^m(2^m-1)4^(m-1)B_m),

(14)

where B_n is a Bernoulli number and psi(x) is a polygamma function (Finch 2003).

Landau also proved the even stronger fact

 lim_(x->infty)((lnx)^(3/2))/(Kx)[S(x)-(Kx)/(sqrt(lnx))]=C,

(15)

where

C = 1/2[1-ln((pie^gamma)/(2L))]-1/4d/(ds)[ln(product_(p prime; = 3 (mod 4))1/(1-p^(-2s)))]_(s=1)

(16)

= 0.581948659...

(17)

(OEIS A085990), e is the base of the natural logarithm, gamma is the Euler-Mascheroni constant, and L is the lemniscate constant.

Landau's method of proof can be extended to show that

 S(x)∼Kx/(sqrt(lnx))

(18)

has an asymptotic series

 S(x)=Kx/(sqrt(lnx))[1+(c_1)/(lnx)+(c_2)/((lnx)^2)+...+(c_n)/((lnx)^n)+O(1/((lnx)^(n+1)))],

(19)

where n can be arbitrarily large and the c_j are constants with c_1=C (Moree and Cazaran 1999).


REFERENCES:

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 60-66, 1994.

Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc., pp. 25, 47, and 49, 1995.

Finch, S. R. "Landau-Ramanujan Constant." §2.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 98-104, 2003.

Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. https://algo.inria.fr/flajolet/Publications/landau.ps.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 9-10, 55, and 60-64, 1999.

Landau, E. "Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate." Arch. Math. Phys. 13, 305-312, 1908.

Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen, Bd. II, 2nd ed. New York: Chelsea, pp. 641-669, 1953.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.

Moree, P. and Cazaran, J. "On a Claim of Ramanujan in His First Letter to Hardy." Expos. Math. 17, 289-312, 1999.

Selberg, A. Collected Papers, Vol. 2. Berlin: Springer-Verlag, pp. 183-185, 1991.

Shanks, D. "The Second-Order Term in the Asymptotic Expansion of B(x)." Math. Comput. 18, 75-86, 1964.

Shanks, D. "Non-Hypotenuse Numbers." Fibonacci Quart. 13, 319-321, 1975.

Shanks, D. and Schmid, L. P. "Variations on a Theorem of Landau. I." Math. Comput. 20, 551-569, 1966.

Shiu, P. "Counting Sums of Two Squares: The Meissel-Lehmer Method." Math. Comput. 47, 351-360, 1986.

Sloane, N. J. A. Sequences A001481/M0968, A064533, A085990, and A164775 in "The On-Line Encyclopedia of Integer Sequences."

Stanley, G. K. "Two Assertions Made by Ramanujan." J. London Math. Soc. 3, 232-237, 1928.

Stanley, G. K. Corrigendum to "Two Assertions Made by Ramanujan." J. London Math. Soc. 4, 32, 1929.

 Wolfram Research, Inc. "Computing the Landau-Ramanujan Constant." https://library.wolfram.com/infocenter/Demos/120/.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.