تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Time
المؤلف: Richard Feynman, Robert Leighton and Matthew Sands
المصدر: The Feynman Lectures on Physics
الجزء والصفحة: Volume I, Chapter 5
2024-01-27
874
Let us consider first what we mean by time. What is time? It would be nice if we could find a good definition of time. Webster defines “a time” as “a period,” and the latter as “a time,” which doesn’t seem to be very useful. Perhaps we should say: “Time is what happens when nothing else happens.” Which also doesn’t get us very far. Maybe it is just as well if we face the fact that time is one of the things we probably cannot define (in the dictionary sense), and just say that it is what we already know it to be: it is how long we wait!
What really matters anyway is not how we define time, but how we measure it. One way of measuring time is to utilize something which happens over and over again in a regular fashion—something which is periodic. For example, a day. A day seems to happen over and over again. But when you begin to think about it, you might well ask: “Are days periodic; are they regular? Are all days the same length?” One certainly has the impression that days in summer are longer than days in winter. Of course, some of the days in winter seem to get awfully long if one is very bored. You have certainly heard someone say, “My, but this has been a long day!”
It does seem, however, that days are about the same length on the average. Is there any way we can test whether the days are the same length—either from one day to the next, or at least on the average? One way is to make a comparison with some other periodic phenomenon. Let us see how such a comparison might be made with an hour glass. With an hour glass, we can “create” a periodic occurrence if we have someone standing by it day and night to turn it over whenever the last grain of sand runs out.
We could then count the turnings of the glass from each morning to the next. We would find, this time, that the number of “hours” (i.e., turnings of the glass) was not the same each “day.” We should distrust the sun, or the glass, or both. After some thought, it might occur to us to count the “hours” from noon to noon. (Noon is here defined not as 12:00 o’clock, but that instant when the sun is at its highest point.) We would find, this time, that the number of “hours” each day is the same.
We now have some confidence that both the “hour” and the “day” have a regular periodicity, i.e., mark off successive equal intervals of time, although we have not proved that either one is “really” periodic. Someone might question whether there might not be some omnipotent being who would slow down the flow of sand every night and speed it up during the day. Our experiment does not, of course, give us an answer to this sort of question. All we can say is that we find that a regularity of one kind fits together with a regularity of another kind. We can just say that we base our definition of time on the repetition of some apparently periodic event.